

Regd. Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 800001

JEE Main 2023 (Memory based)

25 January 2023 - Shift 1

Answer & Solutions

CHEMISTRY

- 1. Radius of 2^{nd} orbit of Li^{2+} ion is x, radius of 3^{rd} orbit of Be^{3+} will be
 - 27*x* Α. 16
 - $\frac{16x}{27}$ В.

 - $\frac{4x}{3}$ C.
 - $\frac{3x}{4}$ D.

Answer (A)

Solution:

$$r_{Li^{2+}} = r_o \times \frac{2^2}{3} = \frac{4r_o}{3} = x \implies r_o = \frac{3x}{4}$$
$$r_{Be^{3+}} = r_o \times \frac{3^2}{4} = \frac{9r_o}{4} = \frac{9\times 3\times x}{4\times 4} = \frac{27x}{16}$$

- 2. If X-atoms are present at alternate corners and at body centre of a cube and Y-atoms are present at 1/3rd of face centers then what will be the empirical formula?
 - A. X_{2.5}Y
 - B. X_5Y_2
 - C. *X*_{1.5}*Y*
 - D. $X_{3}Y_{2}$

Answer (D)

Solution:

Ansv

No. of X – atoms per unit cell = $1 + 4 \times \frac{1}{8} = \frac{3}{2}$

No. of Y – atoms per unit cell = $2 \times \frac{1}{2} = 1$

Therefore, the empirical formula of the solid is X_3Y_2 .

3. Which of the following option contains the correct match

Table – I (Elements)	Table – II (Flame colour)
A. K	P. Violet
B. Ca	Q. Brick Red
C. Sr	R. Apple Green
D. Ba	S. Crimson Red
A. A – P, B – Q, C – S, D – R	
B. A – Q, B – P, C – S, D – R	
C. A – R, B – S, C – P, D – Q	
D. A – S, B – R, C – Q, D – P	
/er (A)	

Solution:

- K Violet
- Ca Brick Red
- Sr Crimson Red
- Ba Apple Green
- 4. Match the following

List - I	List - II
A. <i>Pb</i> ²⁺ , <i>Cu</i> ²⁺	1. H_2S in dil HCl
B. <i>Fe</i> ³⁺ , <i>Al</i> ³⁺	2. NH_4Cl with $(NH_4)_2CO_3$
C. Ni ²⁺ , Co ²⁺	3. H_2S in dil NH_4OH
D. <i>Ca</i> ²⁺ , <i>Ba</i> ²⁺	4. NH_4Cl with NH_4OH

- $A. \quad A-1, \, B-2, \, C-3, \, D-4$
- B. A 1, B 4, C 3, D 2
- $C. \ \ A-4, \, B-3, \, C-2, \, D-1$
- $D. \ \ A-2,\,B-1,\,C-4,\,D-3$

Answer (B)

Solution:

 Pb^{2+} and Cu^{2+} will precipitate as PbS and CuS respectively by passing H_2S gas in presence of *dil*. *HCl*. Fe^{3+} and Al^{3+} will precipitate as $Fe(OH)_3$ and $Al(OH)_3$ respectively by adding NH_4Cl and NH_4OH Ni^{2+} and Co^{2+} will precipitate as *NiS* and *CoS* respectively by passing H_2S in presence of *dil* NH_4OH . Ca^{2+} and Ba^{2+} will precipitate as $CaCO_3$ and $BaCO_3$ respectively by adding NH_4Cl and $(NH_4)_2CO_3$.

- 5. Which of the following is correct about antibiotics
 - A. Antibiotics are the substances that promote the growth of micro-organisms
 - B. Penicillin has bacteriostatic effect
 - C. Erythromycin has bactericidal effect
 - D. They are synthesised artificially

Answer (D)

Solution: Antibiotics are synthesised artificially.

6. Consider the following sequences of the reactions

 $NO_2 \xrightarrow{hv} A + B$ $B + O_2 \rightarrow O_3(g)$ A can be?

- A. *N*₂*O*
- B. *NO*
- C. N_2O_3
- D. *N*₂

Answer (B)

Solution:

$$NO_2 \xrightarrow{hv} NO(g) + O(g)$$
(A) (B)
$$O(g) + O_2(g) \rightarrow O_3(g)$$
(B)

- 7. Correct order of basic strength in aqueous solution for
 - CH₃ NH₂
 CH₃ NH CH₃
 CH₃ N(CH₃) CH₃
 NH₃
 - B. 3>2>1>34
 C. 4>2>1>3
 D. 2>4>3>1

Answer (A)

Solution:

Basic strength \propto Availability of lone pairs on Nitrogen atom

The correct order of basic strength in aqueous medium is

$$\begin{array}{ccc} CH_3-NH-CH_3>CH_3-NH_2>CH_3-N(CH_3)-CH_3>NH_3\\ (2) & (1) & (3) & (4) \end{array}$$

The availability of lone pair on N-atom in case of ammonia and alkyl amines in aqueous medium depend on three factors

- Electron donating effects: + I effect is present in case of alkyl amines but not in case of ammonia and availability of electrons on N – atom ∝ +I effect
- Solvation: More is the solvation less will be the availability of electrons on N-atom. Extent of solvation ∝ no. of H-atoms directly attach to N-atom
- Steric Crowding: More is no. of alkyl groups more is the steric crowding and less will be the availability of electrons on N-atom
- **8.** Which Graph graph is correct for Isothermal process at T_1 , $T_2 \& T_3$ if $(T_3 > T_2 > T_1)$

Solution:

According to Boyle Law $P \propto \frac{1}{V}$

The graph must be hyperbola.

As we know, PV = nRT

So as increase the Temperature the PV graph area increases

As $(V_3 > V_2 > V_1)$ for fixed P

$$= (T_3 > T_2 > T_1)$$

And the correct option is (D)

9. An athlete is given 100g of glucose energy equivalent to 1560KJ to utilise 50% of this gained energy in an event. Enthalpy of evaporation of H_20 is 44KJ/mol. In order to avoid storage of energy in the body the mass of water (in g) he would perspire is: (Round off the nearest Integer)

Answer (319)

Solution:

Given 100 g of glucose yields 1560 KJ of energy. 50% of 1560 KJ that is 780 KJ is used to perspire water To perspire 1 mol of water that is 18 g of water 44 KJ energy is required Therefore, Moles of water evaporated = $\frac{780}{44}$ mol

Weight of water evaporated = $\frac{780}{44} \times 18 = 319 g$

(Assuming water is contained in the body)

10. Which of the following option contains the correct graph between π/c and *c* at constant temperature (Where π is osmotic pressure and c is concentration of the solute)

Answer (A)

Solution:

The value of $\frac{\pi}{c}$ is constant at constant temperature

11. How many of the following ions/elements has the same value of spin magnetic moment?

V³⁺, Cr³⁺, Fe²⁺, Ni²⁺

Answer (2)

Solution:

 V^{3+} - $d^2 - 2$ unpaired electrons

 Cr^{3+} - $d^3 - 3$ unpaired electrons

 $Fe^{2+} - d^6 - 4$ unpaired electrons

 Ni^{2+} - d⁸ – 2 unpaired electrons

 $\mathsf{V}^{3\text{+}}$ and $\mathsf{Ni}^{2\text{+}}$ has the same number of unpaired electrons and hence has the same value of spin magnetic Moment.

12. How many of the following complexes is (are) paramagnetic?

 $[Fe(CN)_{6}]^{3\text{-}}, [Fe(CN)_{6}]^{4\text{-}}, [NiCl_{4}]^{2\text{-}}, [Ni(CN)_{4}]^{2\text{-}}, [CuCl_{4}]^{2\text{-}}, [Cu(CN)_{4}]^{3\text{-}}, [Cu(H_{2}O)_{4}]^{2\text{+}}, [Cu(H_{2}O)_{4}]^{2\text{-}}, [Cu(H_{2}O)_{4}]^{$

Answer (4)

Solution:

- $$\label{eq:constraint} \begin{split} & [Fe(CN)_6]^{3^{-}} d^5 paramagnetic \\ & [Fe(CN)_6]^{4^{-}} d^6 diamagnetic \\ & [NiCl_4]^{2^{-}} d^8 paramagnetic \\ & [Ni(CN)_4]^{2^{-}} d^8 diamagnetic \\ & [CuCl_4]^{2^{-}} d^9 paramagnetic \\ & [Cu(CN)_4]^{3^{-}} d^{10} diamagnetic \\ & [Cu(H_2O)_4]^{2^{+}} d^9 paramagnetic \end{split}$$
- 13. Which of the following shows least reactivity towards nucleophilic substitution reaction?

Answer (C)

Solution:

Aryl halides containing EWG at ortho or para position are more reactive towards nucleophilic substitution. reaction than meta isomer.

14. For a first order reaction, $A \rightarrow B$; $t_{1/2}$ is 30 minutes. Then find the time in minutes required for 75% completion of reaction?

Answer (60 minutes)

Solution:

 $t_{75\%} = t_{1/4} = 2 \times t_{1/2} = 2 \times 30 \text{ minutes} = 60 \text{ minutes}$

B. A - 1; B - 4; C - 3; D - 2

- C. A-2; B-3; C-4; D-1
- $D. \ \ A-1 \ \, ; \ B-3 \ \, ; \ C-2 \ \, ; \ D-4$

16. Consider the following conversion.

Which of the following option contains the correct structure of 'A'.

Answer (B)

Solution:

17. Consider the following sequence of reaction.

Which of the following option contains the correct structure?

Solution:

18. Identify the correct sequence of reactants for the following conversion.

- A. Al₂O₃/Cr₂O₃, CrO₂Cl₂/H₃O⁺, Conc. NaOH, H₃O⁺
- B. Al₂O₃/Cr₂O₃, CrO₂Cl₂/H₃O⁺, H₃O⁺, Conc. NaOH
- C. CrO_2Cl_2, Al_2O_3 , Conc. NaOH, H_3O^+
- D. Sn/HCl, Conc. NaOH, CrO₂Cl₂, HNO₃

Answer (A)

Solution:

- **19.** Thionyl chloride on reaction with white phosphorous gives compound A. A on hydrolysis gives compound B which is dibasic. Identify A and B.
 - A. $A PCl_5, B = H_3PO_2$ B. $A - P_4O_6, B = H_3PO_4$
 - $\mathsf{C.} \quad A POCl_3, B = H_3PO_4$
 - $\mathsf{D.} \quad A PCl_3, B = H_3PO_3$

Answer (D)

Solution:

 $P_4 + 8SOCl_2 \rightarrow 4PCl_3 + 4SO_2 + 2S_2Cl_2$ (A) $PCl_3 + H_2 O \rightarrow H_3 PO_3$ (B)

- 20. The correct decreasing order of positive electron gain enthalpy for the following inert gases. He, Ne, Kr, Xe
 - A. He > Ne > Kr > Xe
 - $\mathsf{B.} \quad He > Ne > Xe > Kr$
 - C. He > Xe > Ne > Kr
 - D. Ne > Kr > Xe > He

Answer (D)

Solution: The correct order is, Ne > Kr > Xe > He

21. Consider the following cell represent:

 $Pt/H_2/H^+ // Fe^{+3}/Fe^{+2}$ (1 atm) (1 M)

Then Find the ratio of concentration of Fe^{+2} to Fe^{+3} ? [Given $E_{cell} = 0.712$, $E^{0}_{cell} = 0.771$]

Answer (10)

Solution:

$$\begin{split} E_{Cell} &= E_{cell}^{0} - \frac{0.059}{n} \log \left[\frac{[Fe^{2+}][H^{+}]}{[Fe^{3+}]} \right]^{2} \\ \Rightarrow 0.712 &= 0.771 - \frac{0.059}{2} \times 2 \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \\ \Rightarrow -0.059 &= -0.059 \log \frac{[Fe^{2+}]}{[Fe^{3+}]} \\ \Rightarrow \frac{[Fe^{2+}]}{[Fe^{3+}]} &= 10 \end{split}$$

- 22. Which of the following complexes is paramagnetic in nature?
 - A. $[Fe(NH_3)_2(CN)_4]^{2-1}$
 - B. $[Ni(CN)_4]^{2-}$
 - C. $[Ni(H_20)_6]^{2+}$
 - D. $[Co(NH_3)_4Cl_2]^+$

Solution:

Complex is diamagnetic.

2. $[Ni(CN)_4]^{2-}$ dsp² hybridisation, so it is diamagnetic 3. $[Ni(H_2 O)_6]^{2+}$ sp³d² hybridisation, so it is paramagnetic 4. $[Co(NH_3)_4Cl_2]^+$ d²sp³ hybridisation, so it is diamagnetic So correct answer is option (C)